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1. Introduction

Universally, a skilled reader develops word representations that include strong interconnections
among three lexical constituents — orthography, phonology, and semantics (Perfetti, Liu, & Tan, 2005).
In order to attain high quality word representations, learners need to establish robust bidirectional
connections between these constituents when learning to read (Perfetti & Hart, 2002). However, the
ease of establishing these connections differs across writing systems (Aro & Wimmer, 2003; Ellis et al.,
2004; Liu, Wang, & Perfetti, 2007), which differ both in the structure of orthographic forms and how
these forms map to language.

For learners with an alphabetic language background, the visual complexity of Chinese orthography
creates a particularly challenging task. In English, written words are composed from a pool of 26 letters
in a simple linear fashion. In contrast, Chinese characters are composed of any or all of five basic strokes
and their 44 variants, which are interwoven in stroke patterns to form up to 439 component radicals.
The radicals, following more than 11 positional constraints in two-dimensional space, make up the
compound characters that account for 80% of 7000 frequent characters (Chinese Language Committee,
2009). The rich number and novel composition of orthographic units create a challenge to learners,
who must establish stable links between orthographic forms and meanings. The links from character-
level orthography to meaning are necessary for skilled Chinese reading, because the links from
phonology to meaning are more unreliable given pervasive homophones in Chinese (Perfetti et al.,
2005).

A growing body of research has shown that handwriting is strongly correlated with reading
acquisition among native Chinese learners (Chan, Ho, Tsang, Lee, & Chung, 2006; Pak et al., 2005) and
that handwriting enhances character learning among Chinese as a foreign language (CFL) learners (Cao
et al.,, 2012, 2013; Guan, Liu, Chan, Ye, & Perfetti, 2011; Xu, Chang, Zhang, & Perfetti, 2013). The CFL
studies demonstrate that handwriting strengthens orthographic representations and connections to
semantics. For example, Guan et al. (2011) found that CFL learners developed more robust orthographic
representations (as seen in a lexical decision task) and had better meaning recall (as seen in a trans-
lation production task) when they had encoded such representations through handwriting compared
with either passive reading or pinyin-typing (pinyin: a phonetic system for transcribing the pronun-
ciation of characters into Latin script).

Two mechanisms were proposed for this writing-on-reading effect (Cao et al., 2013; Guan et al,,
2011; Tan, Spinks, Eden, Perfetti, & Siok, 2005). First, writing adds additional sensory-motor infor-
mation to the representations and this motor memory serves visual recognition. Second, writing fo-
cuses attention on stroke compositions, eliciting greater visual attention on orthographic
representations. A neural basis of the motor mechanism has been explored in several neuroimaging
studies (Cao et al., 2012; Longcamp, Anton, Roth, & Velay, 2003). Cao et al. (2012) found that Chinese
characters learned through handwriting elicited greater involvement of bilateral sensori-motor cortex
during a lexical decision task compared with characters learned through passive viewing. Furthermore,
ERP evidence (a larger P100) suggested enhanced visual attention to characters that had been learned
through handwriting (Cao et al., 2013), reflecting early, low level attentive processes in visual cortex.
Thus, there is evidence consistent with two writing-on-reading mechanisms, enhanced sensory-motor
and sequential memories as well as visual-attention allocation.

The present study aims at better understanding the possible role of visual attention in the writing-
on-reading effect through an online ERP study of character learning by adult learners of Chinese. The
critical manipulation was whether characters were presented dynamically in the correct stroke
sequence (a dynamic condition) or statically with the complete character on-screen (a static condition).
High-temporal-resolution ERPs provide a window on the unfolding of attention and memory mech-
anisms that underpin the incremental learning of characters that occurs over multiple exposures.

Our use of dynamic character displays with ERP methods is motivated by three observations. First,
theoretically, dynamic character displays can encourage “implicit writing”. Viewing how a character is
composed sequentially on a stroke-by-stroke basis resembles writing the character by hand, but
without the overt involvement of the motor system. Moreover, dynamic presentation draws attention
to the internal composition of characters, emphasizing the development of visual-orthographic
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representations. Thus, presenting characters dynamically may expose the learner's attention to stroke
compositions without explicit motor involvement. Second, practically, dynamic animation affords a
simple and economic way to learn characters. Although writing is effective, it is more time-consuming
and labor-intensive. The potential value of animation has been manifested in some auxiliary teaching
tools (e.g., Chen, Chien, & Chang, 2013) and self-learning programs (e.g., Estroke by Eon Media Ltd) in
Chinese pedagogy. Third, methodologically, ERPs are sensitive to the temporal unfolding of cortical
processes and often expose processes that go undetected with behavioral measures (Cao et al., 2013;
McLaughlin, Osterhout, & Kim, 2004; Tokowicz & MacWhinney, 2005). In our case, ERPs can allow
inferences about temporal unfolding of the orthographic learning processes (e.g. separation of atten-
tion and memory) and indicators of orthographic-semantic associations.

We investigate the effects of dynamic and static encodings on the development of character
orthographic representations and form-meaning associations by focusing on three ERP components:
two memory-related components, the P300 and P600, as well as one meaning-related component, the
N400. Below we briefly review theoretical bases of these components and relevant findings from word
learning studies.

The P300 and P600 ERP components are of interest because prior research has shown that these
two components reflect different aspects of encoding and memory (Friederici, 2002; Frisch, Kotz, von
Cramon, & Friederici, 2003). These components can reflect processes that are open to differing
cognitive descriptors and there is a question about whether the P600 belongs to the P300 family
(Coulson, King, & Kutas, 1998; Frisch et al., 2003). However, in our learning paradigm, it is useful to
consider the P300 as an indicator of perceptual memory and the P600 as an indicator of episodic
memory, consistent with much of the research literature on these components.

One influential account of the P300 is the context updating hypothesis (Donchin, 1981), which in-
terprets the P300 as reflecting the updating of mental representations, which occurs through an
attention-driven comparison of stimulus attributes that produces a reaction to differences. In processing
sensory stimuli, the P300 has been shown to reflect attention: Greater P300 amplitudes are elicited to
target stimuli relative to other stimuli (Kok, 1997; Polich, 1989; Rushby, Barry, & Doherty, 2005). At
higher levels, distinctive words (Fabiani, Karis, & Donchin, 1986, 1990) and more attended words elicit
larger P300 responses (Curran, 2004; Curran & Cleary, 2003). In line with this attention interpretation,
we expect the P300 to be an indicator of attention allocation during character learning. More specifically,
and consistent with the updating interpretation, this component should be associated with stroke by
stroke dynamic displays, which explicitly update a previous stimulus by adding a stroke.

In contrast, we take the P600 component as an index of episodic memory. In a classic recognition
paradigm, greater P600 amplitudes occur during recognition of “old” (previously presented) items
relative to “new” items (Curran, 1999; Rugg, Allan, & Brich, 2000; Rugg et al., 1998; Rugg,
Schloerscheidt, Doyle, Cox, & Patching, 1996). Applied to word learning, larger P600 components
have been associated with the viewing of newly learned words relative to both unknown words and
familiar words (Balass, Nelson, & Perfetti, 2010; Perfetti, Wlotko, & Hart, 2005). These findings can be
explained by an episodic, recollection-based account of the P600.

The N400 component has largely been associated with meaning retrieval or meaning integration
(Brown & Hagoort, 1993; Federmeier & Kutas, 1999; Kutas & Hillyard, 1980a, 1980b; for a review, see
Kutas & Federmeier, 2011). In previous word learning studies, N40O effects have been observed during
meaning judgments to words learned in sentence contexts (Mestres-Misse, Rodriguez-Fornells, &
Munte, 2007), with synonym-like definitions (Perfetti, Liu, et al., 2005; Perfetti, Wlotko, et al., 2005), or
as incomplete lexical entries, with new words associated with meaning or phonology but not both
(Balass et al., 2010).

In summary, our study addresses two research questions. First, what is the influence of two
different character encodings — dynamic and static — on the establishment of robust orthographic
representations? Second, to what extent do dynamic and static encodings strengthen form-meaning
associations? Specifically, we hypothesize that dynamic encoding of characters will lead to better
form recognition than static encoding, given that the dynamic presentation will draw learners'
attention to the internal composition of the characters. We expect this dynamic learning mechanism
will lead to larger P300 responses to dynamically encoded characters relative to statically encoded
ones. We also expect incremental learning to be reflected by P600 responses to the newly-learned
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characters over exposures. Furthermore, if dynamic displays lead to better orthographic learning, we
would predict that they would lead to stronger form-meaning associations, which depend on ortho-
graphic form representations. This would lead to reduced N400 in response to dynamically encoded
characters relative to statically encoded characters on a meaning-based task. Finally, we are interested
in examining whether the hypothesized encoding effect can be seen in a long-term retention. By
designing a delayed test two weeks after the learning, we expect that brain responses which are
sensitive to encoding manipulation would be predictive to retention scores for characters learned by
different encodings.

Our predictions are based on the visual-attention allocation hypothesis: By drawing learners'
attention to the visual forms, dynamic encoding will lead to the establishment of robust orthographic
representations. When attention is directed to the orthographic constituent, the resulting higher
quality form representations may allow associations to be more readily made from to the semantic
constituent, leading to strong form-meaning memory traces. To test these predictions, we adopted a
combined behavioral (explicit) and ERPs (implicit) approach, recording ERPs during learning as well as
testing. To the best of our knowledge, this study is the first to examine on-line processing during the
incremental learning of Chinese orthography.

2. Methods
2.1. Participants

Nineteen adult CFL learners (10 male) enrolled in 2"9-year Chinese classes at the University of
Pittsburgh participated. Ages ranged from 18 to 30 years (mean = 20.73 years, SD = 3.09). All partic-
ipants met the following criteria, based on an informational interview: (1) native English speaking, (2)
no Chinese-heritage background, (3) normal or corrected-to-normal vision, (4) right handed, (5) no
history of neurological or psychiatric impairment, and (6) no learning disorder. During the learning and
testing phases, participants continued their Chinese class.

2.2. Materials

Sixty Chinese characters that had not been taught at the time of the experiment were selected as
learning materials from the participants’' Chinese textbooks. Half of the characters have a left-right
configuration and the other half have an up-down configuration. In addition to configuration, the
characters were matched by (1) number of strokes, (2) number of chunks as defined by the Chinese
Orthography Database (Chen, Chang, Chiou, Sung, & Chang, 2011), and (3) frequency of the English
translation (Brysbaert & New, 2009). Detailed information of each character can be retrieved from the
Appendix. All the characters have identical forms in the traditional and the simplified systems.

2.3. Procedure

This study used a within-subject design that included pretest, learning, immediate testing, and
delayed testing phases. The independent variables are presentation type (dynamic vs. static) and
number of exposure (first vs. average across second and third exposures); the dependent variables are
behavioral performance (accuracy and reaction time) and ERP components (P300, N400, and P600).
The ERP recordings were made during the learning and immediate testing phases.

In the pretest phase, the participants were asked to write the pinyin and meaning of the 60 char-
acters used in the learning phase. Immediately after the pretest, the participants moved to a sound-
attenuated and electrically insulated booth equipped with a computer and a 15-in (38.1 cm) CRT
display with a 60 Hz refresh rate to begin learning and testing. At a set viewing distance of 60 cm, both
dynamic and static displays subtended a vertical and a horizontal visual angle of 2°. All computerized
tasks were programmed and carried out on E-Prime software (Psychology Software Tools, Inc., Pitts-
burgh, PA).

In the learning phase, the participants were instructed to pay attention to the form and the English
translation of each character and to try to associate the form with its meaning. Each character learning
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trial proceeded as follows (in order of display): a 500 ms fixation point, a blank display for 300 ms, a
character presented statically for 1000 ms, another blank display for 300 ms, either a dynamic or a
static presentation of the character (the presentation times were equated), the character presented
statically for 1000 ms, the character's English translation presented for 1000 ms, and finally, an eye
image presented for 1000 ms to indicate to participants that they were able to blink freely. For the
dynamic display, each stroke smoothly appeared over 300 ms to present its writing sequence (average
number of strokes = 10); for the static display, each character remained complete over the same
presentation time as it did in the dynamic presentation. Fig. 1 provides an overview of the trial
sequence for the two conditions of the same character. 30 characters were learned using a dynamic
presentation and 30 characters were learned using a static presentation. For each condition, there were
three blocks and 30 characters appeared randomly within a block. Thus, the participants experienced
three exposures to the learning trial of each character. Both the learning materials and the sequence of
encodings were counterbalanced. The learning phase lasted approximately 25 min.

Immediately after the learning phase, the participants completed an old/new judgment task and a
form-meaning matching task. In the old/new judgment task, the participants were exposed to the 60
characters from the learning phase and 60 novel characters. Following a fixation point for 500 ms, a
character was presented for 1000 ms, followed by a “yes-no” judgment presented for 1000 ms. The
participants were instructed to judge whether the character presented on the screen was a previously-
presented character. In the form-meaning matching task, the participants saw characters followed by
English translations that were learned during the learning session. Half of the 60 translations
semantically matched with the characters, and half semantically mismatched with the character.
Following a fixation point for 500 ms, a character was presented for 1000 ms, followed by an English
word for 1000 ms, and then a “yes-no” judgment for 1000 ms. The participants were instructed to
judge whether the English word was the correct meaning of the character. For both judgment tasks, the
participants used their index fingers to press a button for a “yes” or a “no” response. This delayed
judgment design excluded ERP contamination from a readiness potential. The “yes” and “no” buttons
were counterbalanced across participants. The presentation of stimuli in each task was randomized.
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Fig. 1. Example trials for static (top panel) and dynamic (down panel) presentations of the same character # (English translation:
advantage).
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Two weeks after the learning session, the participants completed a paper-and-pen form-meaning
matching task as a retention test. The test presented the same 60 character-English word pairs that
appeared at immediate test. The participants were instructed to judge whether the character have the
same meaning as the English words or not (write “Y” for “Yes” and “N” for “No”).

2.4. ERP data acquisition and pre-processing

ERP data were recorded during the learning the immediate testing phases. Participants were fitted
with a 128 electrode Geodesic sensor net (Tucker, 1993) with Ag/AgCl electrodes (Electrical Geodesics,
Inc., Eugene, OR). Scalp potentials were recorded with a sampling rate of 500 Hz and a hardware
bandpass filter of 0.01—200 Hz. Impedances were kept below 40 kQ, a good threshold with this system
(Ferree, Luu, Russell, & Tucker, 2001). During the recording, a vertex reference was used; later, the data
was referenced offline using an average reference. Six electrodes were monitored for artifacts related to
eye-blinks and eye-movements.

Preprocessing was done using both EEGLAB (Delorme & Makeig, 2004) and NetStation software
(Electrical Geodesics, Inc., Eugene, OR). Offline, data were re-referenced to the average reference. In-
dependent components were extracted utilizing the Extended Informax algorithm (i.e., the binica
function; Delorme & Makeig, 2004). The components related to eye movement were identified using
ADJUST (Mognon, Jovicich, Bruzzone, & Buiatti, 2011) and then removed. Data were further analyzed in
NetStation where segments were created based on the event of interest of each task. In the learning
task, segments started 200 ms before the onset of the first static display of a character on each trial, and
extended 800 ms (1000 ms in total). In the old/new judgment task, trials were segmented into 1000 ms
epochs, starting 200 ms before onsets of characters. In the form-meaning matching task, trials were
also segmented into 1000 ms epochs, starting 200 ms before onsets of English words. Segmented data
were digitally filtered with a 30-Hz lowpass finite impulse response (FIR) filter. Within a segment,
differential voltages greater than +75 pV, and +140 uV on two separate pairs of electrodes were
considered eye movements and eye blinks, respectively. Moreover, any electrodes displaying variation
less than +0.5 pV within 150 ms or variation more than +200 pV across the entire segment were
considered bad channels. Segments that contained either eye movements, eye blinks, or more than 12
bad channels were rejected. After bad channels were removed and replaced by interpolation using data
from surrounding channels (Ferree, 2006). Participants with more than 12 bad channels were removed
from data analyses; only one participant in the form-meaning matching task was excluded due to
excessive artifacts. After eliminating bad trials, mean number of trials per condition was 28.4 in the
learning phase, 27.9 in the old/new judgment task, and 14.8 in the form-meaning matching task.

2.5. ERP data analyses

The ERP analysis focused on the P300, N400, and P600 components. We followed the conventions of
prior research (Hoormann, Falkenstein, Schwarzenau, & Hohnsbein, 1998; Jeon & Polich, 2001; Picton
et al., 2000; Polich, 2007) in examining both mean amplitudes and peak latencies for these compo-
nents. The mean amplitude is defined as the average voltage of the ERP waveform within a certain time
window. The peak latency is defined as the time to reach the greatest absolute amplitude within a
specified time window.

Fig. 2 shows the schematic of the electrode net used in this study, including notations indicating the
approximate locations of the international 10—20 system (Jasper, 1958). For the P300, potentials were
analyzed within the time window of 270—380 ms using values averaged across frontal, central, and
parietal areas (F3, Fz, C3, C4, P3, and P4 clusters). For the N400, potentials were analyzed within the
time window of 350—500 ms using values averaged across central and right parietal areas (Pz and P4
clusters). For the P600, potentials were analyzed within the time window of 480—760 ms using values
averaged across central-parietal areas (Cz and Pz clusters). Repeated-measures analyses of variance
(ANOVAs) were performed to examine the effect of condition on the ERP components. When appli-
cable, critical values were adjusted using the Greenhouse and Geisser (1959) correction for violation of
the assumption of sphericity. When appropriate, differences were examined using the pairwise
comparisons with Bonferroni correction.
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Fig. 2. Schematic flat representation of the 128 electrode positions (the front of the head is at the top). Electrode clusters that were
used in data analysis are highlighted (red and blue are used to distinguish electrode clusters) and these 9 clusters correspond to the
international 10—20 systems (F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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3. Results
3.1. Behavioral measures

Behavioral measures did not reveal any difference between dynamic and static conditions. Table 1
presents the descriptive statistics of participants' accuracy and reaction time (RT) on the correct re-
sponses in each task. In the pretest, none of the participants wrote the pinyin and meaning of the
characters correctly. In the old-new judgment task, there was no condition difference on accuracy,
F(1,18) < 1, whereas there was a significant difference on RT, F(1,18) = 5.51, p = .03, with the static
presentation leading to faster RTs than the dynamic condition (p = .03). However, given that the RTs
were retrieved from delayed responses where the participants were asked to respond when they saw a
judgment probe, the faster RT on the static condition should be interpreted with a caution. In the form-
meaning matching task, no difference between conditions was found either for the accuracy,
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Table 1
Means and standard deviations (shown in parentheses) of accuracy and reaction time for the dynamic and static conditions in
the immediate test and the retention test.

Old/New Form-meaning Retention task

Judgment task (n = 18) Matching task (n = 17) (n=18)

Dynamic Static Dynamic Static Dynamic Static
Accuracy (%) 88.00 88.32 86.72 87.89 70.35 71.40

(10.57) (9.05) (8.96) (8.22) (9.36) (11.83)
Reaction time (ms) 342.90 327.07 319.74 328.25 — -

(106.48) (98.90) (95.73) (89.44)

F(1,17) < 1, or RT, F(1,17) = 1.09, p = .31. In the delayed paper-and-pencil retention test, no difference
between the dynamic and static conditions was found, F(1,18) < 1.

3.2. ERP measures

ERP measures revealed significant difference between conditions. We summarize the major find-
ings first and then present the results by tasks. In the learning phase, the results show (1) an increased
P300 for the dynamic presentation, (2) for both static and dynamic presentations, an earlier P600 after
repeated exposures to the characters. In the testing phase, the results show (3) a greater P300 for the
new items over the old items, (4) a greater P600 for the old items versus the new items, and (5) a larger
N400 on the semantically mismatched items than the semantically matched items for characters
learned by static presentation, but not by dynamic presentation. Additionally, brain-behavior corre-
lations show that (6) the amplitude difference of P300 (dynamic minus static) in the learning phase
predicted two-week retention for characters learned by dynamic presentation.

3.2.1. Dissociation between P300 and P600 in the learning phase

In the learning phase, one critical question was whether dynamic presentation of characters would
facilitate orthographic learning, compared with static presentations, as indexed by two memory-related
ERP components: P300 (an indicator of perceptual memory) and P600 (an indicator of episodic mem-
ory). We carried out two types of analyses to answer this question. The first analysis examined the dif-
ference between dynamic and static conditions over exposures; the second analysis evaluated the
difference across exposures to characters in the learning phase regardless of presentation condition (dy-
namic or static).

For the first analysis, we found an effect of learning condition on the P300 component but not on the
P600 component. For the mean amplitude analysis, in the time window of the typical P300
(270—350 ms), the very first exposure, which preceded the display manipulation, produced no dif-
ference between conditions, F(1,18) = 1.80, p = .20, as expected. However, following the onset of the
display manipulation, the average across the second and third exposures produced P300 amplitudes
that were larger for the dynamically presented characters than for the statically presented characters,
F(1,18) = 5.16, p = .04. For the P600 mean amplitude (time window: 480—760 ms), no difference was
found between dynamic and static presentations either at the first exposure: F(1,18) = 1.30, p = .27 or
for the average of second and third exposures: F(1,18) < 1. For the latency analysis, using the same time
window and scale distribution, no differences between conditions were found.

For the second analysis, we found a general learning effect on the P600 component not the P300
component. Fig. 3 shows ERP waves illustrating the P600 difference across trials. In the 480—760 ms time
window, a main effect of exposure was found by an ANOVA on the peak latencies, F(2,36) = 5.98, p < .01,
but not mean amplitude, F(2,36) < 1. Averaging across the dynamic and static conditions, we found that
the peak latency of the P600 was earlier during the second (p = .02) and third exposures (p = .02), than
during the first exposure, with no further difference between the second and third exposures (p = .99).
This main effect of exposure, however, was not apparent in the 270—350 ms time window of the P300,
neither in peak analysis, F(2,36) = 2.62, p = .12, nor in amplitude analysis, F(2,36) < 1.
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Fig. 3. ERP waves corresponding to 1st, 2nd, and 3rd exposures (E1/E2/E3) of P600 (time window: 480—760 ms) in the learning task,
where electrodes are selected for analyses and corresponding to Cz of the 10—20 systems. P600 latency is longer for 1st exposure
than for 2nd and 3rd exposures. Negative voltages are plotted down.

Overall, the dynamic presentation elicited larger P300 responses than did the static presentation,
while both conditions produced an earlier amplitude peak in the P600 after the first exposure.

3.2.2. P300 and P600 effects in the old-new judgment task

In the testing phase, we continued to examine the P300 and P600 to observe the relationship be-
tween the perceptual and episodic memories. For each ERP component, two analyses were carried out.
One analysis focused on the mean amplitude of the waveform when the participants encountered novel
items (i.e., the “new” condition) relative to newly-learned items (i.e., the “old” condition). The other
analysis focused on the mean amplitude of the waveform when the participants encountered items
learned in the dynamic and static conditions of the learning phase. For the P300 component (time
window: 280—380 ms), there was a difference between the new and old conditions, F(1,18) = 18.26,
p < .01, with the new condition eliciting a greater positivity than the old condition (p <.01). However, no
P300 difference was found between the dynamic and static conditions, F(1,18) < 1. For the P600
component (time window: 500—600 ms), there was also a difference between the new and old condi-
tions, F(1,18) = 5.61, p = .03. The pattern of responses was the inverse of that in the P300, with characters
in the old condition eliciting a greater positivity than those in the new condition (p = .03). No P600
difference was found between the dynamic and the static conditions, F(1,18) < 1.

In summary, during the old-new task, new characters elicited greater P300 responses than the old
(newly learned) characters, whereas the old characters elicited larger P600 responses than the new
characters. Fig. 4 shows the ERP mean amplitudes for the P300 and P600 effects in the old/new
comparisons. No differences on either component were found between characters learned in the dy-
namic and static conditions.

3.2.3. N400 effect in the form-meaning matching task

Another critical question in the study was whether a dynamic presentation would strengthen the
association between two lexical constituents — orthography and semantics. We answered this question
by investigating the N400 component. In the time window surrounding the typical N400 (350—500 ms),a
2 (learning condition: dynamic and static) x 2 (stimuli type: semantically matched and semantically
mismatched) ANOVA revealed a significant interaction, F(1,17) = 7.94, p = .01. Simple main effect tests
found that characters presented dynamically showed no significant N400 differences between
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Fig. 4. P300 and P600 mean amplitudes for the “Old” and “New” conditions at clusters corresponding to the international 10—20
system. At the frontal and central areas, P300 is significantly greater for the new items than the old items. At the parietal area, P600
is significantly greater for the old items than the new items.

semantically mismatched and semantically matched stimuli (p = .99); for the characters that were
presented statically, semantically mismatched stimuli elicited a greater negativity than semantically
matched stimuli (p < .01). The restriction of the N400 effect to characters learned in the static condition
diverges from the behavioral data, which show that meaning judgment accuracy and reactions times
were comparable for static and dynamic presentations. The N400 difference between the two conditions
may reflect the strength of the form-meaning association beyond what is indexed by RTs. The grand
average waveforms and topographic maps for the dynamically and statically presented characters in
semantically matched and semantically mismatched conditions are shown in Fig. 5 and Fig. 6,
respectively.

3.3. Brain-behavioral correlation over time

Finally, we examined whether a brain indicator found to be sensitive to the dynamic vs. static manip-
ulation in the learning phase (i.e., the P300 component) predicted form-meaning recall on the retention
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Fig. 5. ERP waves corresponding to the N400 effect (time window: 350—500 ms) in the form-meaning matching task. At the parietal
area, N400 is significantly greater for static mismatched condition than for static matched condition.

test. We conducted two brain-behavior correlation analyses. First, because P300 amplitude differences
were found between the dynamic and static presentations, we created amplitude difference scores by
subtracting each participant's mean P300 amplitude in the static condition from that in dynamic condition.
We correlated the P300 amplitude difference scores with the retention scores for the characters learned in
the dynamic and static conditions. Larger P300 difference scores (dynamic minus static) were significantly
and positively correlated with retention scores for characters learned in the dynamic condition (r = .58,
p < .01, two-tailed). The P300 difference scores were negatively but not significantly correlated with
retention scores for characters learned in the static condition (r = —.27, p = .27, two-tailed). Fig. 7 shows the
brain-behavior correlation.

4. Discussion

This study investigated how dynamic and static encodings differentially support the development
of orthographic representations and form-meaning associations in learning Chinese characters. Based
on the visual-attention allocation hypothesis, we predicted that dynamic encoding would lead to
better form recognition and further affect form-meaning mapping. The results diverged somewhat
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Fig. 6. Topographical maps of the N400 effect (time window: 350—500 ms) in the form-meaning matching task. At the parietal area,
N400 is significantly greater for the static and mismatched condition than for the static and matched condition.

across behavioral and ERP measures: The behavioral measures did not reveal a reliable difference
between dynamic and static encodings, but the ERP measures did.

Behaviorally, accuracies did not differ in the form-meaning matching task. Although reaction times
favored static encoding, implications are limited given the design of delayed response probes. Interest-
ingly, the ERP measures yielded significant differences between conditions: (1) although during learning,
multiple exposures supported Chinese orthographic learning in both conditions equally (e.g., P600 was
sensitive to exposures for both dynamic and static conditions), dynamic encoding induced more distinct
orthographic representations than static encoding (e.g., P300 was sensitive to manipulations of attention
allocation); (2) at immediate testing, N400 effects appeared only for statically encoded characters, sug-
gesting that static encoding was better at establishing form-meaning links during beginning exposures to
new characters; and (3) at a two week delay, greater character retention for characters encoded
dynamically was positively associated with greater P300 responses during learning.

Taken together, the results suggest that an intervention designed to draw attention to details of
orthographic form does not have a simple effect on all aspects of orthographic (character) learning;
instead its effects are specific to the cognitive processes that are sensitive to the features of the
intervention. Here, the dynamic sequencing of strokes had its effect on incremental attention to form,
which in turn had an effect on long-term character recognition, but not on the association of form and
meaning.

We ground these conclusions by reference to the dissociation between the P300 and P600 com-
ponents during the learning phase. During learning, the P300 amplitude was greater for the dynam-
ically encoded characters than the statically encoded characters. We suggest that the P300 effects
reflect the attention-mediated updating attracted by the incremental addition of strokes during the
dynamic display of a character. This interpretation is consistent with context updating theory
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Fig. 7. Brain behavior correlations. The difference amplitude of P300 across 2nd and 3rd exposures (E2/E3) where electrodes are
selected for analyses and corresponding to P3 and P4 of the 10-20 system is positively correlate with participants' retention scores in
the dynamic condition.

(Donchin, 1981), which postulates an attention-driven comparison of a representation with a
continuing stream of stimuli. The P300 is produced when a distinct stimulus or stimulus characteristic
is detected. For example, words with distinctive features relative to other words (e.g., different font
size) elicit larger P300 components during encoding and are more likely to be recalled (Karis, Fabiani, &
Donchin, 1984).

The amplitude of the P300 thus may index an updating process associated with encoding opera-
tions (e.g., Fabiani, Karis, & Donchin, 1990; Paller, McCarthy, & Wood, 1988) that is facilitative of
memory storage and retrieval (e.g., Azizian & Polich, 2007). We found that larger average P300 am-
plitudes for the dynamic condition relative to the static condition were associated with increased
recognition after two weeks, as revealed by the positive correlation between P300 amplitude differ-
ences and retention scores for words learned in the dynamic condition. We reason that the participants
may have more attentively encoded the dynamic characters, resulting in more highly-specified
orthographic representations; these highly-specified representations later contribute to recognition.

While the P300 reflects attention and perceptual memory, the P600 indicates a different memory
mechanism, reflective of episodic memory, or recollection-based memory. The P600 distinguishes
repeated from unrepeated stimuli (e.g., Curran, 1999; Guillem, N'Kaoua, Rougier, & Claverie, 1995; Rugg
& Nagy, 1989; Smith & Halgren, 1989). In word learning studies, the P600 has been demonstrated to be
greater for recently learned words than “old” familiar words in English (Frishkoff, Perfetti, & Collins-
Thompson, 2011; Perfetti, Wlotko, et al., 2005) and in Chinese (Cao et al.,, 2013). In the present
study, we observed an earlier P600 peak following the second and third exposures to a character and
this effect was indifferent to whether the display was static or dynamic. This implies a rapid neural
response to a recognition event, as additional exposures reactivate previous word learning episodes.
The disassociation between the P300 and P600 suggests that the P300 is sensitive to the amount of
attentional resources engaged during dynamic encoding, while the P600 is sensitive to the number of
exposures to the characters, regardless of the encoding method.

The second question of the present study was which method of encoding new characters, dynamic
or static, better establishes form-meaning associations. We focused on an N400 effect (i.e., a greater
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negativity on semantically mismatched trials than on semantically matched trials) given that N400 has
been shown as an indicator of strengthened form-meaning link (Mestres-Misse et al., 2007; Perfetti,
Wiotko, et al., 2005). This N400 effect was elicited by characters learned in the static condition, but
not the dynamic condition. This superficially appears in contradiction to Guan et al.'s (2011) study,
which found that handwriting, a dynamic encoding method, lead to better meaning recall than a static
encoding method (i.e., passive reading).

While both handwriting and viewing animation encourage greater visual attention to the ortho-
graphic constituent, these two interventions differ in how they introduce dynamic encodings. Viewing
how characters are composed stroke-by-stroke guides learners' attention to the sequence of strokes that
build to a visual-orthographic form, but without active motor encoding by the learner. The writing-on-
reading effect (Cao et al., 2013; Guan et al., 2011; Tan et al., 2005), according to the fMRI study by Cao
et al. (2013), has neural correlates in greater activation of sensori-motor and visual spatial brain
areas, compared with passive viewing. Passively viewing dynamic displays may not produce these
neural correlates, although we lack direct imaging comparisons between writing and animations effects.
Instead, our results suggest that dynamic animations affect the allocation of visual attention, compared
with static displays that represent normal reading. The difference we observe between static and dy-
namic displays may reflect cortical activity patterns that are influenced by visual attention in more
subtle ways that the contrast produced by handwriting vs. reading. Thus, animated displays that
enhance visual attention alone may not support the links from form to meaning that seem to be
strengthened by writing. To put it another way, handwriting strengthens the representation of character
forms and thus the formation of meaning connections to these forms. Animated displays strengthens
the perception of building blocks of character forms — the sequence of specific strokes — rather than the
character as whole functional unit, which is thus less accessible for meaning connections.

In this context, the ERP effects are relevant for considering display effects. Taking into account both
the N400 results from the form-meaning matching task and the P300 effects during the learning phase,
we see a trade-off in the learning of different lexical constituents. Greater P300 responses during
learning were associated with greater retention of orthographic form learning over two weeks for the
dynamically encoded characters. We attribute this effect to the dynamic encoding condition attracting
attention (and thus perceptual memory) to the processing of the characters' visual forms. However,
while this visual attention to form — the orthographic constituent — may establish a strong form
representation, it may do so at a cost in establishing initial form-meaning links. In the form-meaning
matching task, N400 effects were found only for characters encoded statically, suggesting that the
form-meaning link was better strengthened by the relatively passive observation of the characters,
which perhaps resulted in more equally allocated attention to both form and meaning. Thus, although
dynamic exposure recruited greater attentional resources to encoding the character forms, this may
have drawn attention away from the form-meaning link between the characters and their English
translations. This resulted in the absence of an N400 effect for dynamically encoded characters in the
form-meaning matching task and the presence of such an effect for statically encoded characters.

The trade-off interpretation of the results of this ERP study is consistent with previous behavioral
studies (Xu, Chang, & Perfetti, 2014; Xu et al., 2013). In the most relevant study (Xu et al., 2013),
compared the effectiveness of reading (i.e., static encoding), animation, and handwriting (i.e., dynamic
encoding) in learning Chinese characters. Animation and handwriting led to better form recognition
(i.e., faster reaction times), while reading lead to superior meaning recall (i.e., higher accuracy). The
authors suggested a trade-off in different encoding methods: a dynamic encoding advantage for the
orthographic constituent and a static encoding advantage for the form-meaning link. Their arguments
resonate with the lexical quality hypothesis (Perfetti, 2007; Perfetti & Hart, 2002), which stresses that
the lexical constituents (e.g., orthography, semantics, and phonology) can be learned to a higher level
of quality at different rates for different individuals at different points during learning. Thus, these
researchers proposed that characteristics of learners (e.g., vocabulary size), as well as interventions,
may play arole in the development of lexical representations. Future studies involving individuals with
different vocabularies and interventions with varied learning trials are needed to clarify these
interpretations.

These studies combine with the present one in emphasizing the learning specificity of instructional
procedures. In the case of orthographic learning, this specificity applies to the constituents of lexical
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representations. Thus, dynamic encoding (e.g., handwriting, animation, and visual chunking) draws
attentional resources toward the incremental establishment of high-quality orthographic represen-
tations in which all strokes and radicals are fully specified (Perfetti, 2007; Perfetti & Hart, 2002). Static
encoding (e.g., passive reading) may produce less fully specified representations, but until the char-
acter vocabulary becomes large and reduces the discriminability among the representations, these less
complete representations are sufficient to make reliable links to meaning. That is, with the static
display, the learner can allocate attention to associating semantic or phonological constituents to the
orthographic representation (Perfetti, Liu, et al., 2005), even if it is not fully specified. These obser-
vations suggest that the use of multiple encoding methods may be effective for promoting high levels
of learning that establish both fully specified forms and their associations to semantic constituents.
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Appendix

Learning Materials: 60 characters.

Chinese character S# C# Configuration English translation English translation frequency
1 Ell 4 2 left-right to make 70,775
2 bl 5 2 left-right to throw 6570
3 F 6 2 left-right sweat 1115
4 % 7 3 left-right to change 12,258
5 ii'4 8 2 left-right share 3545
6 b= 8 3 left-right record 4365
7 7 8 3 left-right to rumble 139
8 ¥ 8 4 left-right to call 43,931
9 & 9 2 left-right to include 568
10 ®w 9 2 left-right to cut 11,718
11 = 9 3 left-right to bow 1034
12 1’ 9 2 left-right common 2275
13 1% 10 4 left-right study 2501
14 # 10 3 left-right to fall 6044
15 73 10 2 left-right to lack 905
16 & 10 3 left-right to cost 2801
17 # 11 2 left-right to push 3598
18 i 11 2 left-right even 44,672
19 2| 12 4 left-right remains 890
20 e 12 3 left-right to hold 22,273
21 g 12 2 left-right hard 15,700
22 73 12 2 left-right to drop 6661
23 # 13 4 left-right proud 4265
24 b3 13 5 left-right tower 1165
25 B’ 13 3 left-right coal 335
26 B 13 5 left-right hall 2649
27 o) 13 2 left-right to do 312,915
28 R 13 4 left-right source 1437
29 & 14 4 left-right happiness 1249
30 b 14 4 left-right area 3821
31 5 4 2 up-down mutual 368
32 #x 5 2 up-down full 8512
33 5= 7 2 up-down beautiful 14,266
34 =3 7 2 up-down arms 3050
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(continued )
Chinese character S# C# Configuration English translation English translation frequency
35 & 8 4 up-down life 40,629
36 ES 8 2 up-down wife 17,795
37 & 8 4 up-down surprise 4534
38 = 8 3 up-down to enjoy 4222
39 d 8 2 up-down hot 9682
40 = 9 2 up-down royal 1185
41 ® 9 2 up-down some 88,089
42 & 9 4 up-down hat 3273
43 # 9 3 up-down to catch 6911
44 =5 9 3 up-down bitter 15,700
45 R 9 2 up-down suddenly 2854
46 = 10 3 up-down night 44,168
47 = 10 4 up-down advantage 1125
48 & 11 4 up-down case 14,403
49 & 11 2 up-down to know 291,780
50 ] 11 2 up-down morning 22,389
51 # 11 5 up-down to send 9169
52 & 11 3 up-down bag 4796
53 = 11 3 up-down base 1804
54 < 12 4 up-down ever 36,170
55 E 12 4 up-down good 133,117
56 ] 12 4 up-down pipe 989
57 = 13 3 up-down chopsticks 93
58 = 14 5 up-down to collect 1020
59 R 14 5 up-down bear 2928
60 2 14 4 up-down grave 1340

Note. “S#” and “C#” refer to the number of strokes and the number of chunks in a character, respectively.
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